115 research outputs found

    Compositionality, stochasticity and cooperativity in dynamic models of gene regulation

    Full text link
    We present an approach for constructing dynamic models for the simulation of gene regulatory networks from simple computational elements. Each element is called a ``gene gate'' and defines an input/output-relationship corresponding to the binding and production of transcription factors. The proposed reaction kinetics of the gene gates can be mapped onto stochastic processes and the standard ode-description. While the ode-approach requires fixing the system's topology before its correct implementation, expressing them in stochastic pi-calculus leads to a fully compositional scheme: network elements become autonomous and only the input/output relationships fix their wiring. The modularity of our approach allows to pass easily from a basic first-level description to refined models which capture more details of the biological system. As an illustrative application we present the stochastic repressilator, an artificial cellular clock, which oscillates readily without any cooperative effects.Comment: 15 pages, 8 figures. Accepted by the HFSP journal (13/09/07

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Gene Expression Profiles Distinguish the Carcinogenic Effects of Aristolochic Acid in Target (Kidney) and Non-target (Liver) Tissues in Rats

    Get PDF
    BACKGROUND: Aristolochic acid (AA) is the active component of herbal drugs derived from Aristolochia species that have been used for medicinal purposes since antiquity. AA, however, induced nephropathy and urothelial cancer in people and malignant tumors in the kidney and urinary tract of rodents. Although AA is bioactivated in both kidney and liver, it only induces tumors in kidney. To evaluate whether microarray analysis can be used for distinguishing the tissue-specific carcinogenicity of AA, we examined gene expression profiles in kidney and liver of rats treated with carcinogenic doses of AA. RESULTS: Microarray analysis was performed using the Rat Genome Survey Microarray and data analysis was carried out within ArrayTrack software. Principal components analysis and hierarchical cluster analysis of the expression profiles showed that samples were grouped together according to the tissues and treatments. The gene expression profiles were significantly altered by AA treatment in both kidney and liver (p < 0.01; fold change > 1.5). Functional analysis with Ingenuity Pathways Analysis showed that there were many more significantly altered genes involved in cancer-related pathways in kidney than in liver. Also, analysis with Gene Ontology for Functional Analysis (GOFFA) software indicated that the biological processes related to defense response, apoptosis and immune response were significantly altered by AA exposure in kidney, but not in liver. CONCLUSION: Our results suggest that microarray analysis is a useful tool for detecting AA exposure; that analysis of the gene expression profiles can define the differential responses to toxicity and carcinogenicity of AA from kidney and liver; and that significant alteration of genes associated with defense response, apoptosis and immune response in kidney, but not in liver, may be responsible for the tissue-specific toxicity and carcinogenicity of AA

    Boolean network simulations for life scientists

    Get PDF
    Modern life sciences research increasingly relies on computational solutions, from large scale data analyses to theoretical modeling. Within the theoretical models Boolean networks occupy an increasing role as they are eminently suited at mapping biological observations and hypotheses into a mathematical formalism. The conceptual underpinnings of Boolean modeling are very accessible even without a background in quantitative sciences, yet it allows life scientists to describe and explore a wide range of surprisingly complex phenomena. In this paper we provide a clear overview of the concepts used in Boolean simulations, present a software library that can perform these simulations based on simple text inputs and give three case studies. The large scale simulations in these case studies demonstrate the Boolean paradigms and their applicability as well as the advanced features and complex use cases that our software package allows. Our software is distributed via a liberal Open Source license and is freely accessible fro

    Minimum Information About a Simulation Experiment (MIASE)

    Get PDF
    The original publication is available at www.ploscompbiol.orgReproducibility of experiments is a basic requirement for science. Minimum Information (MI) guidelines have proved a helpful means of enabling reuse of existing work in modern biology. The Minimum Information Required in the Annotation of Models (MIRIAM) guidelines promote the exchange and reuse of biochemical computational models. However, information about a model alone is not sufficient to enable its efficient reuse in a computational setting. Advanced numerical algorithms and complex modeling workflows used in modern computational biology make reproduction of simulations difficult. It is therefore essential to define the core information necessary to perform simulations of those models. The Minimum Information About a Simulation Experiment describes the minimal set of information that must be provided to make the description of a simulation experiment available to others. It includes the list of models to use and their modifications, all the simulation procedures to apply and in which order, the processing of the raw numerical results, and the description of the final output. MIASE allows for the reproduction of any simulation experiment. The provision of this information, along with a set of required models, guarantees that the simulation experiment represents the intention of the original authors. Following MIASE guidelines will thus improve the quality of scientific reporting, and will also allow collaborative, more distributed efforts in computational modeling and simulation of biological processes.The discussions that led to the definition of MIASE benefited from the support of a Japan Partnering Award by the UK Biotechnology and Biological Sciences Research Council. DW was supported by the Marie Curie program and by the German Research Association (DFG Research Training School ‘‘dIEM oSiRiS’’ 1387/1). This publication is based on work (EJC) supported in part by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). FTB acknowledges support by the NIH (grant 1R01GM081070- 01). JC is supported by the European Commission, DG Information Society, through the Seventh Framework Programme of Information and Communication Technologies, under the VPH NoE project (grant number 223920). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Publishers versio

    An IGF-I promoter polymorphism modifies the relationships between birth weight and risk factors for cardiovascular disease and diabetes at age 36

    Get PDF
    OBJECTIVE: To investigate whether IGF-I promoter polymorphism was associated with birth weight and risk factors for cardiovascular disease (CVD) and type 2 diabetes (T2DM), and whether the birth weight – risk factor relationship was the same for each genotype. DESIGN AND PARTICIPANTS: 264 subjects (mean age 36 years) had data available on birth weight, IGF-I promoter polymorphism genotype, CVD and T2DM risk factors. Student's t-test and regression analyses were applied to analyse differences in birth weight and differences in the birth weight – risk factors relationship between the genotypes. RESULTS: Male variant carriers (VCs) of the IGF-I promoter polymorphism had a 0.2 kg lower birth weight than men with the wild type allele (p = 0.009). Of the risk factors for CVD and T2DM, solely LDL concentration was associated with the genotype for the polymorphism. Most birth weight – risk factor relationships were stronger in the VC subjects; among others the birth weight – systolic blood pressure relationship: 1 kg lower birth weight was related to an 8.0 mmHg higher systolic blood pressure CONCLUSION: The polymorphism in the promoter region of the IGF-I gene is related to birth weight in men only, and to LDL concentration only. Furthermore, the genotype for this polymorphism modified the relationships between birth weight and the risk factors, especially for systolic and diastolic blood pressure

    Do you get what you pay for? Sales incentives and implications for motivation and changes in turnover intention and work effort

    Get PDF
    This study investigated relations between pay-for-performance incentives designed to vary in instrumentality (annual pay-for-performance, quarterly pay-for-performance, and base pay level) and employee outcomes (self-reported work effort and turnover intention) in a longitudinal study spanning more than 2 years. After controlling for perceived instrumentality, merit pay increase, and the initial values of the dependent variables, the amount of base pay was positively related to work effort and negatively related to turnover intention, where both relationships were mediated by autonomous motivation. The amounts of quarterly and annual pay-for-performance were both positively related to controlled motivation, but were differently related to the dependent variables due to different relations with autonomous motivation

    Systems Biology by the Rules: Hybrid Intelligent Systems for Pathway Modeling and Discovery

    Get PDF
    Background: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion: This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer

    MPP+-induced cytotoxicity in neuroblastoma cells: Antagonism and reversal by guanosine

    Get PDF
    Guanosine exerts neuroprotective effects in the central nervous system. Apoptosis, a morphological form of programmed cell death, is implicated in the pathophysiology of Parkinson’s disease (PD). MPP+, a dopaminergic neurotoxin, produces in vivo and in vitro cellular changes characteristic of PD, such as cytotoxicity, resulting in apoptosis. Undifferentiated human SH-SY5Y neuroblastoma cells had been used as an in vitro model of Parkinson’s disease. We investigated if extracellular guanosine affected MPP+-induced cytotoxicity and examined the molecular mechanisms mediating its effects. Exposure of neuroblastoma cells to MPP+ (10 μM–5 mM for 24–72 h) induced DNA fragmentation in a time-dependent manner (p < 0.05). Administration of guanosine (100 μM) before, concomitantly with or, importantly, after the addition of MPP+ abolished MPP+-induced DNA fragmentation. Addition of MPP+ (500 μM) to cells increased caspase-3 activity over 72 h (p < 0.05), and this was abolished by pre- or co-treatment with guanosine. Exposure of cells to pertussis toxin prior to MPP+ eliminated the anti-apoptotic effect of guanosine, indicating that this effect is dependent on a Gi protein-coupled receptor, most likely the putative guanosine receptor. The protection by guanosine was also abolished by the selective inhibitor of the enzyme PI-3-K/Akt/PKB (LY294002), confirming that this pathway plays a decisive role in this effect of guanosine. Neither MPP+ nor guanosine had any significant effect on α-synuclein expression. Thus, guanosine antagonizes and reverses MPP+-induced cytotoxicity of neuroblastoma cells via activation of the cell survival pathway, PI-3-K/Akt/PKB. Our results suggest that guanosine may be an effective pharmacological intervention in PD
    • …
    corecore